SEARCHING FOR THE HIGGS BOSON

David Rainwater
University of Rochester

TASI 2006 University of Colorado, Boulder June 13, 2006

- Collider searches for the Higgs
- Is it the SM Higgs boson?
- SUSY & other BSM Higgs sectors

Some recommended references

The Anatomy of electro-weak symmetry breaking. I/II: [SM & MSSM] Abdelhak Djouadi, hep-ph/0503172 and 0503173.

Les Houches Physics at TeV Colliders 2005, SM/Higgs WG summary report. C. Buttar et al., hep-ph/0604120.

Physics interplay of the LHC and the ILC, LHC/LC Study Group (G. Weiglein et al.), hep-ph/0410364.

Higgs Physics at the Linear Collider, John Gunion, H. Haber & R. Kooten, hep-ph/0301023.

Tesla TDR, Part III, hep-ph/0106315.

IS IT THE HIGGS OR NOT?

Or, "after the champagne"

Confirm that candidate resonance is SM Higgs

- → SM has very specific predictions for its quantum numbers
 - colorless trivial
 - neutral trivial
 - mass measure as accurately as possible
 - spin 0
 - · easy to confirm as boson by decay products
 - \cdot if $H o \gamma \gamma$ seen, not S=1
 - \cdot $S \ge 2$ is exotic ignore for now
 - CP even
 - gauge couplings: g_W w/ tensor structure $g^{\mu\nu}$
 - Yukawa couplings: $|Y_f| = \frac{m_f}{\mathrm{v}}$
 - · note: must use running couplings $(m_f(M_H))$
 - spontaneous symmetry breaking potential
- ► these things get increasingly difficult
- → many look like SM, but we want precision to distinguish BSM

Mass measurement at LHC & ILC

Free parameter in the SM, but not necessarily BSM.

LHC and ILC have comparable ability: ILC is \sim twice as good if M_H low.

Spin & CP measurements at LHC

1. Nelson technique, $H \to ZZ \to 4\ell$: relative Z decay planes

$$F(\phi) = 1 + \alpha \cos(\phi) + \beta \cos(2\phi)$$

SM:
$$\alpha = \alpha(M_H) > \frac{1}{4}, \beta = \beta(M_H)$$

pseudoscalar: $\beta = -0.25$

studied w/ detector simulation for $M_H>200~{\rm GeV}$:

great, but need to be studied for $M_H < 200 \ \mathrm{GeV}$

Note: S=1 not possible for gg collisions

Spin & CP measurements at LHC

2. CMMZ technique, $H \to ZZ^{(*)} \to 4\ell$: extension to Nelson technique

Above ZZ threshold: Nelson technique must be extended; $J^P=2^+,4^+,\ldots$ can mimic 0^+ Higgs in decays to ZZ

→ rule out high-spin states via lack of angular correlations between initial state and Higgs flight direction

Below ZZ threshold: look at M_{st} (off-shellness of Z) dist'bn

 $\frac{d\Gamma}{dM_{*}}$ is a function of spin:

Spin & CP measurements at LHC

- 3. WBF tagging jets, $H \rightarrow$ anything
- ightharpoonup reflects tensor & CP structure of HVV vertex
- · two $SU(2)_L \times U(1)_Y$ gauge-invariant D6 operators to consider:

$$\mathcal{L}_{6} = \frac{g^{2}}{2\Lambda_{e,6}} (\Phi^{\dagger}\Phi) W_{\mu\nu}^{+} W^{-\mu\nu} + \frac{g^{2}}{2\Lambda_{o,6}} (\Phi^{\dagger}\Phi) \widetilde{W}_{\mu\nu}^{+} W^{-\mu\nu}$$

expand Φ field to get effective D5 operators:

$$\mathcal{L}_{5} = \frac{1}{\Lambda_{e,5}} H W_{\mu\nu}^{+} W^{-\mu\nu} + \frac{1}{\Lambda_{o,5}} H \widetilde{W}_{\mu\nu}^{+} W^{-\mu\nu}$$

D5 CP-even operator is distinctive:

$$\mathcal{M}_{e,5} \propto \frac{1}{\Lambda_{e,5}} J_1^{\mu} J_2^{\nu} \left[g_{\mu\nu} (q_1 \cdot q_2) - q_{1,\nu} q_{2,\mu} \right] \sim \frac{1}{\Lambda_{e,5}} \left[J_1^0 J_2^0 - J_1^3 J_2^3 \right] \vec{p}_T^{j1} \cdot \vec{p}_T^{j2}$$

D5 CP-odd operator also distinctive:

 $\epsilon_{\mu\nu\rho\delta}$ is nonzero only if 4 external p_i independent (not coplanar)

Azimuthal tagging jet distributions

WBF H analyses don't use ϕ_j info., so operator structure easily revealed

- guarantee: ≥ 1 of WBF $H \to \tau^+\tau^-, W^+W^-$ work for all M_H
- → trivial to distinguish pure cases, but what about SM + D5 interf.?

SM-D5 Interference

SM $g^{\mu\nu}$ and D5 CP-even couplings interfere, distorting ϕ_{ij} distribution Obvious choice: asymmetry observable:

$$A_{\phi} = \frac{\sigma(\Delta\phi_{jj} < \pi/2) - \sigma(\Delta\phi_{jj} > \pi/2)}{\sigma(\Delta\phi_{jj} < \pi/2) + \sigma(\Delta\phi_{jj} > \pi/2)}$$

ightarrow meas'mt sensitive to $\Lambda_6 \sim 1$ TeV

Note:

ignores $gg \to Hgg$ contamination!

 Λ_5 [TeV] Λ_6 [TeV]

16 1.8

5.0 0.7

1.6 0.4

0.5 0.23

Spin & CP measurements at ILC

ullet J and P totally determined by σ_{ZH} threshold rise & angular dist'bn

$$\frac{d\sigma}{d\cos\theta_Z} \propto \beta \left[1 + a\beta^2 \sin^2\theta_Z + b\eta\beta\cos\theta_Z + \eta^2\beta^2 (1 + \cos^2\theta_Z) \right]$$

where η is a pseudoscalar coupling to \boldsymbol{Z}

· can perform a more sophisticated analysis for admixtures

Higgs couplings measurements at LHC

We need to determine g_{HVV} as well as all Y_f . Is this possible?

The LHC measures rates:

 $\sigma \cdot$ BR <u>extracted</u> by removing collider & phase space effects w/ Monte Carlo

Problem with number of observables:

- given n couplings, suppose n final states observed
- at LHC, for light M_H , $\left(\sigma_H\cdot {
 m BR}\right)_i \propto \left(\Gamma_p \frac{\Gamma_d}{\Gamma_H}\right)_i$
- n counts all Γ_p , Γ_d , but we're one measurement short to obtain Γ_H , total width

Old idea: measure ratios of BR's (cf. e.g. ATLAS TDR)

- → can discern SM from some BSM, but not well
- → does not measure absolute couplings

New idea: sum of partial widths is total width, w/ mild theory assumptions

Note: also need to parameterize possible couplings to non-SM particles

So what is the actual Higgs width?

Somewhere around 250-300 GeV the detector can resolve the width.

Below that, we resort to other techniques.

Let's parameterize $\left(\sigma\cdot \mathrm{BR}\right)_{i,\mathrm{exp}}$ via the products $\left(\frac{\Gamma_p\Gamma_d}{\Gamma_H}\right)_i$. At LHC, we have $X_\gamma, X_\tau, X_W, X_Z, Y_\gamma, Y_W, Y_Z, Z_b, Z_\gamma, Z_W$ where $X_i = \mathrm{WBF}$, $Y_i = \mathrm{GF}$, and $Z_i = t\bar{t}H$ production $\left(\mathrm{really} \propto \frac{Y_t^2\Gamma_d}{\Gamma_H}\right)$ Note: any $X_i, Y_i, Z_i = 0$ is still a measurement!

Let's parameterize $(\sigma \cdot \mathrm{BR})_{i,\mathrm{exp}}$ via the products $(\frac{\Gamma_p \Gamma_d}{\Gamma_H})_i$.

At LHC, we have $X_{\gamma}, X_{\tau}, X_{W}, X_{Z}, Y_{\gamma}, Y_{W}, Y_{Z}, Z_{b}, Z_{\gamma}, Z_{W}$

where X_i = WBF, Y_i = GF, and Z_i = $t\bar{t}H$ production (really $\propto \frac{Y_t^2\Gamma_d}{\Gamma_H}$)

Note: any $X_i, Y_i, Z_i = 0$ is still a measurement!

• In the SM, total width is sum of partial widths:

$$\Gamma_H = \Gamma_W + \Gamma_Z + \Gamma_b + \Gamma_g + \Gamma_\tau + \Gamma_\gamma \quad (\Gamma_t = 0 \text{ for } M_H < 2m_t)$$

Recall: $t\bar{t}H, H\to b\bar{b}$ not so good, so assume $\frac{\Gamma_b}{\Gamma_\tau}=3c_{\rm QCD}\frac{m_b^2}{m_\tau^2}$, $c_{\rm QCD}$ contains P.S. + NNLO corrections.

Can also assume Γ_W related to Γ_Z by $SU(2)_L$, but not necessary.

Let's parameterize $(\sigma \cdot BR)_{i,exp}$ via the products $(\frac{\Gamma_p \Gamma_d}{\Gamma_H})_i$.

At LHC, we have $X_{\gamma}, X_{\tau}, X_{W}, X_{Z}, Y_{\gamma}, Y_{W}, Y_{Z}, Z_{b}, Z_{\gamma}, Z_{W}$

where X_i = WBF, Y_i = GF, and Z_i = $t\bar{t}H$ production (really $\propto \frac{Y_t^2\Gamma_d}{\Gamma_H}$)

Note: any $X_i, Y_i, Z_i = 0$ is still a measurement!

• In the SM, total width is sum of partial widths:

$$\Gamma_H = \Gamma_W + \Gamma_Z + \Gamma_b + \Gamma_g + \Gamma_\tau + \Gamma_\gamma \quad (\Gamma_t = 0 \text{ for } M_H < 2m_t)$$

Recall: $t\bar{t}H, H\to b\bar{b}$ not so good, so assume $\frac{\Gamma_b}{\Gamma_\tau}=3c_{\rm QCD}\frac{m_b^2}{m_\tau^2}$, $c_{\rm QCD}$ contains P.S. + NNLO corrections.

Can also assume Γ_W related to Γ_Z by $SU(2)_L$, but not necessary.

ullet Now consider $\widetilde{\Gamma}_W=X_{ au}(1+r_b)+X_W(1+r_Z)+X_{\gamma}+\widetilde{X}_g$ where \widetilde{X}_g from Y_{γ} and other data:

$$\widetilde{\Gamma}_W = \left(\Gamma_\tau + \Gamma_b + \Gamma_W + \Gamma_Z + \Gamma_\gamma + \Gamma_g\right) \frac{\Gamma_W}{\Gamma_H} = (1 - \epsilon)\Gamma_W$$

We now have a good lower bound on Γ_W from data.

The total width is then $\Gamma_H = \frac{\widetilde{\Gamma}_W^2}{X_W}$ and error goes as $(1-\epsilon)^{-2}$.

(assumes 5% uncer. on X_i , 20% on Y_i , no Z_i)

 \rightarrow pretty good, but this has flaws & tastes unsatisfactory (r_b , etc.)

More sophisticated: do a global least-likelihood fit to data, using:

$$\sigma_H \cdot \mathrm{BR}(H \to xx) = \frac{\sigma_H^{\mathrm{SM}}}{\Gamma_p^{\mathrm{SM}}} \cdot \boxed{\frac{\Gamma_p \Gamma_d}{\Gamma_H}}$$

- \circ as before, "sum" of channels provides $\Gamma_H(\min)$, but found via fit
- \circ only assumption: $\Gamma_V \leq \Gamma_V^{\mathrm{SM}}$; valid in *any* doublet(+singlet) model $\longrightarrow \frac{\Gamma_V^2}{\Gamma_H}$ then provides $\Gamma_H(\max)$
- o assign exp. stat. & syst. uncer.'s, based on det. sim. studies plus theory
- \circ allow for unobsv. decays via $\Gamma_{\rm extra}$; allow additional loop contributions
- \circ fix M_H

Channels used in current analysis:

- $gg \to H \to W^+W^-, ZZ, \gamma\gamma$
- · WBF $H \rightarrow W^+W^-, ZZ, \gamma\gamma, \tau^+\tau^-$
- $t\bar{t}H, H \to W^+W^-, \gamma\gamma, b\bar{b}$
- $WH, H \rightarrow W^+W^-, \gamma\gamma$
- $\cdot ZH, H \rightarrow \gamma \gamma$

Left: no additional assumptions.

Right: assume nothing new in loops, $g_W = g_W^{\rm SM}$.

Bottom line: LHC can measure absolute Higgs couplings.

Notes on Higgs couplings results:

- 1. assumes WBF not possible at high-lumi (not true, but degraded)
- 2. assumes very bad systematic errors
- 3. assumes lack of improved QCD understanding for S & B
- 4. does not yet include $H \rightarrow$ invis. analyses (WBF,ZH)
- 5. WBF analyses don't yet use minijet veto

Improvements coming soon:

- · better systematics on $H \to \tau^+ \tau^-$ from new fitting tricks
- $\cdot \ H \rightarrow \text{invis. analyses}$
- \cdot QCD NNLO systematic uncer. reduction for gg o H channels
- fitting for M_H
- ► Realize: if new physics found, recalc. Higgs rates (loops, etc.) including it.

What is this about overestimating the QCD error in $gg \rightarrow H$?

Recall our couplings extraction formula:

$$\sigma_H \cdot \mathrm{BR}(H \to xx) = \frac{\sigma_H^{\mathrm{SM}}}{\Gamma_p^{\mathrm{SM}}} \cdot \boxed{\frac{\Gamma_p \Gamma_d}{\Gamma_H}}$$

Global fit analysis assumes $\triangle\left(\frac{\sigma}{\Gamma}\right)_{gg\to H}=20\%$: this is a huge limitation.

But *really* 15-20% uncertainty is for just $\sigma_{gg\to H}$.

The QCD NNLO corrections go as:

$$\Gamma \sim \alpha_s^2(\mu_R) C_1^2(\mu_R) [1 + \alpha_s(\mu_R) X_1 + \dots]$$

$$\sigma \sim \alpha_s^2(\mu_R) C_1^2(\mu_R) [1 + \alpha_s(\mu_R) Y_1 + \dots]$$

Most of the scale variation uncertainty drop out in the ratio:

$$\triangle \left(\frac{\sigma}{\Gamma}\right)_{qq\to H} = \pm 5\%$$
 is much more accurate.

Higgs couplings measurements at ILC

At an e^+e^- collider we can measure the total ZH rate *exactly*.

Look for $Z \to \ell^+\ell^-$ at the pole and calculate the recoil/missing mass; from conservation of momentum, we find:

$$M_H^2 = p_H^2 = (p_+ + p_- - p_Z)^2 = s + M_Z^2 - 2\sqrt{s}E_Z$$

Canonical example:

Achieves $\triangle \sigma_{ZH} \approx 2.5\%$ for a light Higgs.

 \rightarrow now we know g_{HZZ} to $\sim 1\%$

Now to the other couplings: can get from various BR's.

But we need the total width for that – how to get? $\Gamma_H = \frac{\Gamma(H \to X)}{\text{BR}(X)}$ Step-by-step:

- 1. measure σ_{ZH} (super-precise)
- 2. measure best BR's in ZH; e.g. $H \rightarrow b\bar{b}, \gamma\gamma, W^+W^-$
- 3. look in WBF H production with same final state $(H \to b\bar{b}, \gamma\gamma, W^+W^-)$ this gives us $\Gamma(H \to W^+W^-)$

4.
$$\Gamma_H = \frac{\Gamma(H \to W^+ W^-)}{BR(H \to W^+ W^-)}$$

5. other BR's now give individual partial widths (.: couplings)

M_H (GeV)	120	140	160	180	200	220		
Decay	Relative partial width precision (%)							
$b \overline{b}$	1.9	2.6	6.5	12.0	17.0	28.0		
$car{c}$	8.1	19.0						
$ au^+ au^-$	5.0	8.0						
gg	4.8	14.0						
W^+W^-	3.6	2.5	2.1					
ZZ			16.9					
$\gamma\gamma$	23.0							
$Z\gamma$		27.0						

Most recent ILC (800 GeV) analysis for $e^+e^- \rightarrow t\bar{t}H$

 \blacktriangleright competetive w/ LHC for $M_H > 140$ GeV, cover LHC hole for $M_H < 140$ GeV

The SM Higgs potential

$$V(\Phi) = \mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$

$$\mu^2 \rightarrow <0$$
 breaks sym. spontaneously, min. at $v=\sqrt{\frac{-\mu^2}{\lambda}}$

$$\lambda$$
 fixed by $VV \to HH, HHH$ unitarity: $\lambda_{SM} = M_H^2/2v^2$

$$\rightarrow$$
 gives 3,4-point self-couplings $\lambda_{3H,4H}=-6v\lambda,-6\lambda$

Phenomenological approach: measure coefficients of effective potential

$$V(\eta_H) = \frac{1}{2} M_H^2 \eta_H^2 + \lambda v \eta_H^3 + \frac{1}{4} \tilde{\lambda} \eta_H^4$$

- $\rightarrow \lambda$, $\tilde{\lambda}$ now free parameters
- ▶ need direct observation of HH, HHH to measure

Step 1: *HH* production at LHC

SM diagrams for largest contribution:

→ interfere destructively!

 $gg \to HH$ @ LHC: $\mathcal{O}(10k)$ events in 300 fb⁻¹ ("Run I")

Channels to measure σ_{hh}

Consider final state to observe hh events:

Higgs decays to SM pairs: kinematically- allowed $f\bar{f}$, or off-shell WW/ZZ

small M_h : $4b,\ b\bar{b}\tau^+\tau^-,\ b\bar{b}\ell^+\ell^-p_T,\ b\bar{b}\gamma\gamma$

large M_h : $4W \rightarrow$ multileptons

For M_h large, examine 4W final states:

 $HH \rightarrow W^+W^-W^+W^-$ has myriad decays;

choose multilepton final states for trigger and QCD background rejection:

$$\ell^{\pm}\ell^{\pm} + 4j$$
 , $\ell^{\pm}\ell^{\pm}\ell^{\mp} + 2j$

Note: no mass reconstruction!

principal backgrounds are

$$WWWjj, t\bar{t}W, t\bar{t}j, t\bar{t}Z/\gamma^*, WZ+4j$$

must also consider

$$t\bar{t}t\bar{t}$$
, $4W$, $WW+4j$, $WWZjj$ as well as DPS & overlap

Notes:

- 1. Must use exact (finite- m_t) matrix elements for signal!
 - ightarrow K-factor known only in $m_t
 ightarrow \infty$ limit; multiply
- 2. $\sigma_{DPS}=\frac{\sigma_1\sigma_2}{\sigma_{eff}}$ w/ $\sigma_{eff}\sim 15$ mb & P.S. restriction (x_i)
- 3. $\sigma_{ov}=\frac{1}{2}\sigma_1\sigma_2\mathcal{L}_{bc}, \quad \mathcal{L}_{bc}=\mathcal{L}\Delta \tau$ fn. of lumi
- 4. $BR(W^+W^-)$ and Y_t must be known very precisely (systematic uncertainty)

A warning about using effective Lagrangians: normalization ok, but gives wrong kinematics!

$HH \rightarrow 4W$ signal characteristics

Can't reconstruct the event completely (two missing neutrinos); simply take the visible invariant mass, $m_{vis}^2 = \left[\sum_i E_i\right]^2 - \left[\sum_i \mathbf{p}_i\right]^2$

HH is 2-body: m_{vis} peak near threshold; multi-body bkgs won't

Vary $0 < \lambda < 2\lambda_{\rm SM}$: large σ_{hh} change @ low $m_{\rm vis}$ – love that interference!

Results for $hh \rightarrow 4W$ @ LHC

Notes:

- 1. LHC would exclude $\lambda_{3H}=0$ at $\geq 95\%$ c.l. w/ 300 fb $^{-1}$ for $150 < M_H < 200$ GeV
- 2. double lumi (ATLAS+CMS) improves bounds 10-25%
- 3. SLHC (3000 fb $^{-1}$) can get λ_{3H} at 20-30%
- 4. ATLAS finds larger $t\bar{t}j$ background, but min. bias not a problem \longrightarrow

What about $M_H < 150 \ \mathrm{GeV?}$

Possible channels:

- $\cdot \ b \bar{b} b \bar{b} \ -$ QCD 200x larger!
- $\cdot \ b \bar{b} au^+ au^-$ better, but too-low statistics
- $\cdot \ b \overline{b} W^+ W^- t \overline{t}$ is bkg forget it
- · $bb\gamma\gamma$ rare mode works!

Backgrounds to $b\bar{b}\gamma\gamma$ to consider:

- $b\bar{b}\gamma\gamma$
- $\cdot \ c \bar{c} \gamma \gamma$ 1 or 2 fake b jets
- $b\bar{b}j\gamma$ 1 fake γ
- $\cdot \ c ar{c} j \gamma$ 1 or 2 fake b-jets, 1 fake γ
- $\cdot \; jj\gamma\gamma$ 1 or 2 fake b-jets
- $+ bar{b}jj$ 2 fake γ
- $c\bar{c}jj$ 1 or 2 fake b-jets, 2 fake γ
- $\cdot \hspace{0.1cm} jjj\gamma$ 1 or 2 fake b-jets, 1 fake γ
- $\cdot \hspace{0.1cm} jjjj$ 1 or 2 fake b-jets, 2 fake γ
- $\cdot \; Hjj$ 1 or 2 fake b-jets, or 2 fake γ
- $\cdot \ Hj\gamma$ 1 fake γ

	ϵ_{γ}	ϵ_{μ}	$P_{c \to b}$	$P_{j \to b}$	$P_{j \to \gamma}^{hi}$	$P_{j \to \gamma}^{lo}$
LHC	80%	90%	1/13	1/140	1/1600	1/2500
SLHC	80%	90%	1/13	1/23	1/1600	1/2500

► fakes are the worst background!

Note: huge QCD and detector uncertainties on these rates.

Is this a problem? \longrightarrow not really

QCD uncertainties can be worked around if bkg shape is very different:

"pseudo sideband calibration"

→ QCD corrections *usually* do not alter angular distributions

- ightharpoonup HH and $bb\gamma\gamma$ shapes are very different, and in 2-D
- bkg is measured in non-signal region and extrapolated;
 drastically reduces systematic errors

Note: $m_{\rm vis}$ here is complete reconstruction

$HH \to b \bar b \gamma \gamma$ obviously needs a lot of statistics:

 \rightarrow must consider SLHC (planned lumi upgrade to LHC: 3000 fb⁻¹)

events expected for LHC, SLHC (600,6000 fb $^{-1}$): obviously marginal measurement

	hh	$b ar{b} \gamma \gamma$	$car{c}\gamma\gamma$	$b ar{b} \gamma j$	$car{c}\gamma j$	$jj\gamma\gamma$	$bar{b}jj$	$car{c}jj$	γjjj	jjjj	$\sum (\mathrm{bkg})$	S/B
LHC	6	2	1	1	0	5	0	0	1	1	11	1/2
SLHC	21	6	0	4	0	6	1	0	1	1	20	1/1

Step 2: HH at a linear collider

 $m \left(C_{0} U \right)$

Summary of what ILC could do

This is all parton level – desperately needs a detector simulation.

Conclusions:

LC is better for $M_H < 150$ GeV, SLHC is better for $M_H < 150$ GeV, but SLHC would require precision LC input on Higgs couplings.

WW double-Higgs fusion:

$$e^+e^- \to \bar{\nu}_e\nu_e HH$$

Small correction for $\sqrt{s}\lesssim 1$ TeV, important for $\sqrt{s}\gtrsim 1$ TeV.

$$M_h = 120,140,180,240$$

- ► really need CLIC
- \blacktriangleright limits limited by wash-out of HHH diagram at large \sqrt{s}

EW corrections to λ in SM

→ leading 1-loop top quark effects:

$$\lambda_{HHH}^{eff} = \frac{M_H^2}{2v^2} \left[1 - \frac{N_C}{3\pi^2} \frac{m_t^4}{v^2 M_H^2} + \dots \right]$$

 $(M_h, m_t \text{ are physical masses})$

$$\sim -10\%$$
 for $M_H=120~{
m GeV}$

$$\sim -4\%$$
 for $M_H=180~{\rm GeV}$

 \rightarrow should take into account, but no sensitivity @ (S)LHC or ILC; even CLIC is marginal, and only for low M_H

Step 3: HHH at LHC/VLHC (VLHC is $\sqrt{s} = 200$ TeV)

$gg \rightarrow HHH$ will obviously be largest; this is:

Rates extremely low: (before BR's!)

 $\rightarrow \lambda_{4H}$ is washed out by other contributions

beta by this is not going to work

Step 4: HHH at ILC or CLIC or SFCLIC*

What are the rates? Note σ in <u>attobarn</u>:

\sqrt{S}	δg_{4H} = -10%	g_{4H}^{SM}	δg_{4H} = $+10\%$
3 TeV	0.400 ab	0.390 ab	0.383 ab
5 TeV	1.385 ab	1.357 ab	1.321 ab
10 TeV	4.999 ab	4.972 ab	4.970 ab

factoid: 1 year of 10 TeV running at 1 ab $^{-1}$ /yr yields 5 events \rightarrow before BR's!

 \odot Broad conclusion: measuring λ_{4H} is utterly hopeless, anywhere, ever

^{*} Super-Fantasy-CLIC

SUMMARY PART 2

- Observing a new Higgs-ish resonance is only the start!
- Charge & color quantum numbers are trivial;
 mass is a matter of precision, both experimental and theoretical.
- Spin & CP measurements are fairly straightfowrard,
 although CP violation becomes tricky, really needs ILC.
- LHC can measure absolute Higgs gauge & Yukawa couplings with only $SU(2)_L$ as an underlying assumption.
- ILC can measure absolute Higgs gauge & Yukawa couplings without any underlying assumptions.
- Self-coups (Higgs potential) are extremely tough:
 - \cdot LHC is superior for $M_H \gtrsim 150$ GeV, but needs ILC precision input
 - · ILC superior for $M_H \lesssim 150$ GeV
 - $\cdot \lambda_{4H}$ is likely forever inaccessible